Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2315509121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547055

RESUMO

Dysregulation of polyamine metabolism has been implicated in cancer initiation and progression; however, the mechanism of polyamine dysregulation in cancer is not fully understood. In this study, we investigated the role of MUC1, a mucin protein overexpressed in pancreatic cancer, in regulating polyamine metabolism. Utilizing pancreatic cancer patient data, we noted a positive correlation between MUC1 expression and the expression of key polyamine metabolism pathway genes. Functional studies revealed that knockdown of spermidine/spermine N1-acetyltransferase 1 (SAT1), a key enzyme involved in polyamine catabolism, attenuated the oncogenic functions of MUC1, including cell survival and proliferation. We further identified a regulatory axis whereby MUC1 stabilized hypoxia-inducible factor (HIF-1α), leading to increased SAT1 expression, which in turn induced carbon flux into the tricarboxylic acid cycle. MUC1-mediated stabilization of HIF-1α enhanced the promoter occupancy of the latter on SAT1 promoter and corresponding transcriptional activation of SAT1, which could be abrogated by pharmacological inhibition of HIF-1α or CRISPR/Cas9-mediated knockout of HIF1A. MUC1 knockdown caused a significant reduction in the levels of SAT1-generated metabolites, N1-acetylspermidine and N8-acetylspermidine. Given the known role of MUC1 in therapy resistance, we also investigated whether inhibiting SAT1 would enhance the efficacy of FOLFIRINOX chemotherapy. By utilizing organoid and orthotopic pancreatic cancer mouse models, we observed that targeting SAT1 with pentamidine improved the efficacy of FOLFIRINOX, suggesting that the combination may represent a promising therapeutic strategy against pancreatic cancer. This study provides insights into the interplay between MUC1 and polyamine metabolism, offering potential avenues for the development of treatments against pancreatic cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Poliaminas/metabolismo , Transdução de Sinais , Acetiltransferases/genética , Acetiltransferases/metabolismo , Mucina-1
2.
Cancer Prev Res (Phila) ; 17(2): 47-49, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38303649

RESUMO

From risk association between acute promyelocytic leukemia (APL) and obese-overweight individuals, Mazzarella and colleagues hypothesized that a high-fat diet (HFD) promotes development of APL. Using mouse APL model (PML-RARα knock-in), the authors demonstrated that linoleic acid drives activation of PPARδ in hematopoietic progenitors, and that activation of PPARδ increases proliferation of progenitor cells with PML-RARA expression toward APL. Involvements of PPARδ on regulation of stem cell renewal and proliferation were shown in colorectal cancers earlier, but this study newly demonstrates in hematopoietic progenitors, while suggesting use of diet rich in linoleic acid with caution. See related article by Mazzarella et al., p. 59.


Assuntos
Leucemia Promielocítica Aguda , PPAR delta , Camundongos , Animais , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácido Linoleico , Proteínas de Fusão Oncogênica , Tretinoína
3.
Cancer Lett ; 578: 216455, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865160

RESUMO

Ubiquitin-binding associated protein 2 (UBAP2) is reported to promote macropinocytosis and pancreatic adenocarcinoma (PDAC) growth, however, its role in normal pancreatic function remains unknown. We addressed this knowledge gap by generating UBAP2 knockout (U2KO) mice under a pancreas-specific Cre recombinase (Pdx1-Cre). Pancreatic architecture remained intact in U2KO animals, but they demonstrated slight glucose intolerance compared to controls. Upon cerulein challenge to induce pancreatitis, U2KO animals had reduced levels of several pancreatitis-relevant cytokines, amylase and lipase in the serum, reduced tissue damage, and lessened neutrophil infiltration into the pancreatic tissue. Mechanistically, cerulein-challenged U2KO animals revealed reduced NF-κB activation compared to controls. In vitro promoter binding studies confirmed the reduction of NF-κB binding to its target molecules supporting UBAP2 as a new regulator of inflammation in pancreatitis and may be exploited as a therapeutic target in future to inhibit pancreatitis.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Pancreatite , Camundongos , Animais , Ceruletídeo/efeitos adversos , NF-kappa B/metabolismo , Adenocarcinoma/patologia , Neoplasias Pancreáticas/induzido quimicamente , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/prevenção & controle , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/prevenção & controle , Pâncreas/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Glucose/metabolismo , Doença Aguda
4.
Neoplasia ; 45: 100939, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37813000

RESUMO

Inflammation and obesity are two major factors that promote Colorectal cancer (CRC). Our recent data suggests that interleukin (IL)-23, is significantly elevated in CRC tumors and correlates with patient obesity, tumor grade and survival. Thus, we hypothesize that obesity and CRC may be linked via inflammation and IL-23 may be a potential target for intervention in high-risk patients. TCGA dataset and patient sera were evaluated for IL-23A levels. IL-23A [IL-23 p19-/-] knockout (KO) mice were crossed to Apcmin/+ mice and progeny were fed low-fat or high-fat diets. At termination intestines were evaluated for tumorigenesis. Tumors, serum, and fecal contents were analyzed for protein biomarkers, cytokines, and microbiome profile respectively. IL-23A levels are elevated in the sera of patients with obesity and colon tumors. Genetic ablation of IL-23A significantly suppressed colonic tumor multiplicity (76-96 %) and incidence (72-95 %) in male and female mice. Similarly, small-intestinal tumor multiplicity and size were also significantly reduced in IL-23A KO mice. IL-23A knockdown in Apcmin/+ mice fed high-fat diet, also resulted in significant suppression of colonic (50-58 %) and SI (41-48 %) tumor multiplicity. Cytokine profiling showed reduction in several circulating pro-inflammatory cytokines including loss of IL-23A. Biomarker analysis suggested reduced tumor cell proliferation and immune modulation with an increase in tumor-infiltrating CD4+ and CD8+ T-lymphocytes in the IL-23A KO mice compared to controls. Fecal microbiome analysis revealed potentially beneficial changes in the bacterial population profile. In summary, our data indicates a tumor promoting role for IL-23 in CRC including diet-induced obesity. With several IL-23 targeted therapies in clinical trials, there is a great potential for targeting this cytokine for CRC prevention and therapy.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Feminino , Humanos , Masculino , Camundongos , Neoplasias do Colo/patologia , Neoplasias Colorretais/genética , Citocinas , Inflamação , Interleucina-23/genética , Interleucina-23/efeitos adversos , Subunidade p19 da Interleucina-23 , Camundongos Knockout , Obesidade/genética
5.
NPJ Precis Oncol ; 7(1): 79, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598287

RESUMO

In the US, the majority of cancer samples analyzed are from white people, leading to biases in racial and ethnic treatment outcomes. Colorectal cancer (CRC) incidence and mortality rates are high in Alabama African Americans (AAs) and Oklahoma American Indians (AIs). We hypothesized that differences between racial groups may partially explain these disparities. Thus, we compared transcriptomic profiles of CRCs of Alabama AAs, Oklahoma AIs, and white people from both states. Compared to CRCs of white people, CRCs of AAs showed (a) higher expression of cytokines and vesicle trafficking toward modulated antitumor-immune activity, and (b) lower expression of the ID1/BMP/SMAD axis, IL22RA1, APOBEC3, and Mucins; and AIs had (c) higher expression of PTGS2/COX2 (an NSAID target/pro-oncogenic inflammation) and splicing regulators, and (d) lower tumor suppressor activities (e.g., TOB2, PCGF2, BAP1). Therefore, targeting strategies designed for white CRC patients may be less effective for AAs/AIs. These findings illustrate needs to develop optimized interventions to overcome racial CRC disparities.

6.
Cancers (Basel) ; 15(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37568816

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) are promising colorectal cancer (CRC) chemopreventive drugs; however, to overcome NSAIDs' associated side effects, there is a need to develop safer and efficacious approaches. The present study was designed to evaluate (i) the efficacy of nitric-oxide releasing (NO)-Sulindac as compared to Sulindac; (ii) whether NO-Sulindac is superior to Sulindac in enhancing low-dose difluoromethylornithine (DFMO)-induced chemopreventive efficacy, and (iii) assessing the key biomarkers associated with colon tumor inhibition by these combinations. In F344 rats, colonic tumors were induced by azoxymethane (AOM). At the adenoma stage (13 weeks post AOM), groups of rats were fed the experimental diets containing 0 ppm, 500 ppm DFMO, 150 ppm Sulindac, and 200 ppm NO-Sulindac, individually or in combinations, for 36 weeks. Colon tumors were evaluated histopathologically and assayed for expression levels of proliferative, apoptotic, and inflammatory markers. Results suggest that (except for NO-Sulindac alone), DFMO, Sulindac individually, and DFMO combined with Sulindac or NO-Sulindac significantly suppressed AOM-induced adenocarcinoma incidence and multiplicities. DFMO and Sulindac suppressed adenocarcinoma multiplicity by 63% (p < 0.0001) and 51% (p < 0.0011), respectively, whereas NO-Sulindac had a modest effect (22.8%, p = 0.09). Combinations of DFMO plus Sulindac or NO-Sulindac suppressed adenocarcinoma incidence (60%, p < 0.0001; 50% p < 0.0004), and multiplicity (81%, p < 0.0001; 62%, p < 0.0001). Rats that were fed the combination of DFMO plus Sulindac showed significant inhibition of tumor cell proliferation and induction of apoptosis. In addition, enhancement of p21, Bax, and caspases; downregulation of Ki-67, VEGF, and ß-catenin; and modulation of iNOS, COX-2, and ODC activities in colonic tumors were observed. These observations show that a lower-dose of DFMO and Sulindac significantly enhanced CRC chemopreventive efficacy when compared to NO-Sulindac alone, and the combination of DFMO and NO-Sulindac was modestly efficacious as compared to DFMO alone.

7.
Cancer Prev Res (Phila) ; 16(6): 305-307, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259798

RESUMO

The Pancreatic Cancer Early Detection (PRECEDE) Consortium was launched internationally to assess the surveillance of high-risk individuals (HRI) of pancreatic cancer, focusing on genetic risk factors. In the early recruitment period of 3 years from May 2020 to March 2022, the PRECEDE gathered analysis-eligible data on 1,113 HRIs. In this issue of Cancer Prevention Research, Katona and colleagues reported current portrait of demographics of the participants, with significant disparities in gender, race and ethnicity. Now the PRECEDE Consortium aims at correcting these disparities in the next 3 years and double the percentage of underrepresented groups to more closely represent the demographics of patients. See related article by Katona et al., p. 343.


Assuntos
Etnicidade , Neoplasias Pancreáticas , Humanos , Detecção Precoce de Câncer , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
8.
Sci Rep ; 12(1): 11739, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817785

RESUMO

Genomic instability (GI) in cancer facilitates cancer evolution and is an exploitable target for therapy purposes. However, specific genes involved in cancer GI remain elusive. Causal genes for GI via expressions have not been comprehensively identified in colorectal cancers (CRCs). To fill the gap in knowledge, we developed a data mining strategy (Gene Expression to Copy Number Alterations; "GE-CNA"). Here we applied the GE-CNA approach to 592 TCGA CRC datasets, and identified 500 genes whose expression levels associate with CNA. Among these, 18 were survival-critical (i.e., expression levels correlate with significant differences in patients' survival). Comparison with previous results indicated striking differences between lung adenocarcinoma and CRC: (a) less involvement of overexpression of mitotic genes in generating genomic instability in the colon and (b) the presence of CNA-suppressing pathways, including immune-surveillance, was only partly similar to those in the lung. Following 13 genes (TIGD6, TMED6, APOBEC3D, EP400NL, B3GNT4, ZNF683, FOXD4, FOXD4L1, PKIB, DDB2, MT1G, CLCN3, CAPS) were evaluated as potential drug development targets (hazard ratio [> 1.3 or < 0.5]). Identification of specific CRC genomic instability genes enables researchers to develop GI targeting approach. The new results suggest that the "targeting genomic instability and/or aneuploidy" approach must be tailored for specific organs.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Neoplasias Colorretais , Adenocarcinoma/genética , Adenocarcinoma/patologia , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Variações do Número de Cópias de DNA , Instabilidade Genômica , Humanos , Pulmão/patologia , Especificidade de Órgãos , Transcriptoma
9.
Am J Cancer Res ; 12(5): 2118-2131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693092

RESUMO

Colorectal cancer (CRC) incidence is rising globally. Hence, preventing this disease is a high priority. With this aim, we determined the CRC prevention potential of the TRAIL-inducing small molecule ONC201/TIC10 using a preclinical model representing high-risk familial adenomatous polyposis (FAP) patients, Apc min/+ mice. Prior to the efficacy study, optimal and non-toxic doses of ONC201 were determined by testing five different doses of ONC201 (0-100 mg/kg body weight (BW); twice weekly by oral gavage) in C57BL/6J mice (n=6/group) for 6 weeks. BW gain, organ weights and histopathology, blood profiling, and the plasma liver enzyme profile suggested no toxicities of ONC201 at doses up to 100 mg/kg BW. For efficacy determination, beginning at six weeks of age, groups of Apc min/+ male and female mice (n≥20) treated with colon carcinogen azoxymethane (AOM) (AOM-Apc min/+) were administered ONC201 (0, 25, and 50 mg/kg BW) as above up to 20 weeks of age. At termination, efficacy was determined by comparing the incidence and multiplicity of intestinal tumors between vehicle- and drug-treated groups. ONC201 showed a strong suppressive effect against the development of both large and small intestinal tumors in male and female mice. Apc min/+ mice treated with ONC201 (50 mg/kg BW) showed >50% less colonic tumor incidence (P<0.0002) than controls. Colonic tumor multiplicity was also significantly reduced by 68% in male mice (0.44 ± 0.11 in treated vs. 1.4 ± 0.14 in controls; P<0.0001) and by 75% in female mice (0.30 ± 0.10 in treated vs. 1.19 ± 0.19 in controls; P<0.0003) with ONC201 treatment (50 mg/kg BW). Small intestinal polyps were reduced by 68% in male mice (11.40 ± 1.19 in treated vs. 36.08 ± 2.62 in controls; P<0.0001) and female mice (9.65 ± 1.15 in treated vs. 29.24 ± 2.51 in controls; P<0.0001). Molecular analysis of the tumors suggested an increase in TRAIL, DR5, cleaved caspases 3/7/8, Fas-associated death domain protein (FADD), and p21 (WAF1) in response to drug treatment. Serum analysis indicated a decrease in pro-inflammatory serum biomarkers, such as IL1ß, IL6, TNFα, G-CSF, and GM-CSF, in the ONC201-treated mice compared with controls. Our data demonstrated excellent chemopreventive potential of orally administered ONC201 against intestinal tumorigenesis in the AOM-Apc min/+ mouse model.

10.
Cancer Prev Res (Phila) ; 15(4): 209-211, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35373258

RESUMO

In this issue of Cancer Prevention Research, Cecil and colleagues show that nonsteroidal anti-inflammatory drugs (NSAID), celecoxib and naproxen, decrease the expression of programmed death-ligand 1 (PD-L1) and increase the influx of Type I tumor-infiltrating lymphocytes in colonic tumors. Importantly, both decrease of PD-L1 expression and increase of CD8+ T cells were associated with the inhibition of COX-2/PGE2 pathway in vitro and syngeneic colonic tumor xenograft models. This study clearly suggests that NSAIDs regulate the intratumoral immunity multiple ways, including suppression of expression of immune checkpoint blockade. Thus, NSAIDs should be considered as chemopreventive for patients with PD-L1-positive colonic polyp. See related article, p. 225.


Assuntos
Antígeno B7-H1 , Neoplasias do Colo , Anti-Inflamatórios , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/prevenção & controle , Humanos
11.
Nutr Cancer ; 74(7): 2291-2302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34839775

RESUMO

Indian gooseberry (Emblica officinalis Gaertn or Phyllanthus emblica Linn; family Phyllanthaceae) has a recognized history in Indian traditional medicine (Ayurveda). Various therapeutic properties have been attributed to gooseberry as a dietary supplement. Many parts of the plant (fruits, seed, leaves, root, bark, and flowers) possess various activities and are used to treat a range of diseases. This review focuses on the evidence for the cancer-preventive properties of gooseberry, its extracts, and its principal phytochemicals based on studies In Vitro and In Vivo. Most importantly, in multiple rodent models of cancer, treatment with P. emblica was found to prevent tumor incidence, number, and volume at various organ sites. The mechanism(s) implicated in gooseberry-mediated cancer inhibition are diverse and include antioxidants, Phase I and II enzyme modifications, anti-inflammatory action, regulation of the cell cycle, and modulation of oncogenic signaling genes. Studies in humans also indicate that P. emblica can offer various health benefits and synergize with other treatments. This review provides detailed information on the potential use of gooseberry extract as an anticarcinogenic in humans, illuminates the therapeutic applications, and discusses clinical trials.


Assuntos
Neoplasias , Phyllanthus emblica , Ribes , Frutas/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Phyllanthus emblica/química , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
12.
PLoS One ; 16(11): e0259563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34784377

RESUMO

microRNAs (miRNA) in extracellular vesicles (EVs) have been investigated as potential biomarkers for pancreatic ductal adenocarcinoma (PDAC). However, a mixed population of EVs is often obtained using conventional exosome isolation methods for biomarker development. EVs are derived from different cellular processes and present in various sizes, therefore miRNA expression among them is undoubtedly different. We developed a simple protocol utilizing sequential filtration and ultracentrifugation to separate PDAC EVs into three groups, one with an average diameter of more than 220 nm, named operational 3 (OP3); one with average diameters between 100-220 nm, named operational 2 (OP2); and another with average diameters around 100 nm, named operational 1 (OP1)). EVs were isolated from conditioned cell culture media and plasma of human PDAC xenograft mice and early stage PDAC patients, and verified by nanoparticle tracking, western blot, and electronic microscopy. We demonstrate that exosome specific markers are only enriched in the OP1 group. qRT-PCR analysis of miRNA expression in EVs from PDAC cells revealed that expression of miR-196a and miR-1246, two previously identified miRNAs highly enriched in PDAC cell-derived exosomes, is significantly elevated in the OP1 group relative to the other EV groups. This was confirmed using plasma EVs from PDAC xenograft mice and patients with localized PDAC. Our results indicate that OP1 can be utilized for the identification of circulating EV miRNA signatures as potential biomarkers for PDAC.


Assuntos
Adenocarcinoma/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Neoplasias Pancreáticas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Linhagem Celular Tumoral , MicroRNA Circulante/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Microscopia Eletrônica , Pessoa de Meia-Idade , Neoplasias Pancreáticas
13.
Cancers (Basel) ; 13(20)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680308

RESUMO

Obesity-associated chronic inflammation predisposes colon cancer risk development. Interleukin-23 (IL-23) is a potential inflammatory mediator linking obesity to chronic colonic inflammation, altered gut microbiome, and colon carcinogenesis. We aimed to elucidate the role of pro-inflammatory eicosanoids and gut bacterial toxins in priming dendritic cells and macrophages for IL-23 secretion to promote colon tumor progression. To investigate the association of IL-23 with obesity and colon tumorigenesis, we utilized TCGA data set and colonic tumors from humans and preclinical models. To understand IL-23 production by inflammatory mediators and gut microbial toxins, we performed several in vitro mechanistic studies to mimic the tumor microenvironment. Colonic tumors were utilized to perform the ex vivo experiments. Our findings showed that IL-23 is elevated in obese individuals, colonic tumors and correlated with reduced disease-free survival. In vitro studies showed that IL-23 treatment increased the colon tumor cell self-renewal, migration, and invasion while disrupting epithelial barrier permeability. Co-culture experiments of educated dendritic cells/macrophages with colon cancer cells significantly increased the tumor aggression by increasing the secretory levels of IL-23, and these observations are further supported by ex vivo rat colonic tumor organotypic experiments. Our results demonstrate gut microbe toxins and eicosanoids facilitate IL-23 production, which plays an important role in obesity-associated colonic tumor progression. This newly identified nexus represents a potential target for the prevention and treatment of obesity-associated colon cancer.

14.
Cancer Prev Res (Phila) ; 14(11): 1009-1020, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34341012

RESUMO

Colorectal cancer causes over 53,000 deaths annually in the United States. Its rising incidences worldwide and particularly in young adults is a major concern. Here, we evaluated the efficacy of omeprazole that is clinically approved for treating acid reflux, to enable its repurposing for colorectal cancer prevention. In the azoxymethane-induced rat colorectal cancer model, dietary omeprazole (250 and 500 ppm) was administered at early adenoma stage (8 weeks after azoxymethane) to assess the progression of early lesions to adenocarcinoma. Administration of omeprazole at 250 or 500 ppm doses led to suppression of total colon adenocarcinoma incidence by 15.7% and 32% (P < 0.01), respectively. Importantly, invasive carcinoma incidence was reduced by 59% (P < 0.0005) and 90% (P < 0.0001) in omeprazole-administered rats in a dose-dependent manner. There was also a strong and dose-dependent inhibition in the adenocarcinoma multiplicity in rats exposed to omeprazole. Administration of 250 and 500 ppm omeprazole inhibited total colon adenocarcinoma multiplicity by approximately 49% and approximately 65% (P < 0.0001), respectively. While noninvasive adenocarcinomas multiplicity was suppressed by approximately 34% to approximately 48% (P < 0.02), the invasive carcinomas multiplicity was reduced by approximately 74% to approximately 94% (P < 0.0001) in omeprazole-exposed rats in comparison with the untreated rats. Biomarker analysis results showed a decrease in cell proliferation and anti-apoptotic/pro-survival proteins with an increase in apoptosis. Transcriptome analysis of treated tumors revealed a significant increase in adenocarcinoma inhibitory genes (Olmf4; Spink4) expression and downregulation of progression promoting genes (SerpinA1, MMP21, IL6). In summary, omeprazole showed significant protection against the progression of adenoma to adenocarcinoma. PREVENTION RELEVANCE: Preventing colon cancer is urgently needed because of its high incidence and mortality rates worldwide. Toward this end, preventive efficacy of omeprazole, a common medication, was evaluated in animal model of colorectal cancer and was found to suppress colonic adenoma progression to carcinoma. These findings warrant its further evaluation in humans.


Assuntos
Adenocarcinoma , Adenoma , Neoplasias do Colo , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/metabolismo , Adenocarcinoma/prevenção & controle , Adenoma/induzido quimicamente , Adenoma/prevenção & controle , Animais , Azoximetano/toxicidade , Carcinógenos/toxicidade , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/prevenção & controle , Omeprazol/efeitos adversos , Inibidores da Bomba de Prótons/efeitos adversos , Ratos , Ratos Endogâmicos F344
15.
Cancers (Basel) ; 13(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070461

RESUMO

Chromosome Instability (CIN) in tumors affects carcinogenesis, drug resistance, and recurrence/prognosis. Thus, it has a high impact on outcomes in clinic. However, how CIN occurs in human tumors remains elusive. Although cells with CIN (i.e., pre/early cancer cells) are proposed to be removed by apoptosis and/or a surveillance mechanism, this surveillance mechanism is poorly understood. Here we employed a novel data-mining strategy (Gene Expression to Copy Number Alterations [CNA]; "GE-CNA") to comprehensively identify 1578 genes that associate with CIN, indicated by genomic CNA as its surrogate marker, in human lung adenocarcinoma. We found that (a) amplification/insertion CNA is facilitated by over-expressions of DNA replication stressor and suppressed by a broad range of immune cells (T-, B-, NK-cells, leukocytes), and (b) deletion CNA is facilitated by over-expressions of mitotic regulator genes and suppressed predominantly by leukocytes guided by leukocyte extravasation signaling. Among the 39 CNA- and survival-associated genes, the purine metabolism (PPAT, PAICS), immune-regulating CD4-LCK-MEC2C and CCL14-CCR1 axes, and ALOX5 emerged as survival-critical pathways. These findings revealed a broad role of the immune system in suppressing CIN/CNA and cancer development in lung, and identified components representing potential targets for future chemotherapy, chemoprevention, and immunomodulation approaches for lung adenocarcinoma.

16.
Neoplasia ; 23(6): 574-583, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34091121

RESUMO

Lung cancer is the leading cause of cancer related deaths worldwide. The present study investigated the effects of naproxen (NSAID) on lung adenocarcinoma in spontaneous lung cancer mouse model. Six-week-old transgenic KrasG12V mice (n = 20; male + female) were fed modified AIN-76A diets containing naproxen (0/400 ppm) for 30 wk and euthanized at 36 wk of age. Lungs were evaluated for tumor incidence, multiplicity, and histopathological stage (adenoma and adenocarcinoma). Lung tumors were noticeable as early as 12 wk of age exclusively in the KrasG12V mice. By 36 wk age, 100% of KrasG12V mice on control diet developed lung tumors, mostly adenocarcinomas. KrasG12V mice fed control diet developed 19.8 ± 0.96 (Mean ± SEM) lung tumors (2.5 ± 0.3 adenoma, 17.3 ± 0.7 adenocarcinoma). Administration of naproxen (400 ppm) inhibited lung tumor multiplicity by ∼52% (9.4 ± 0.85; P < 0001) and adenocarcinoma by ∼64% (6.1 ± 0.6; P < 0001), compared with control-diet-fed mice. However, no significant difference was observed in the number of adenomas in either diet, suggesting that naproxen was more effective in inhibiting tumor progression to adenocarcinoma. Biomarker analysis showed significantly reduced inflammation (COX-2, IL-10), reduced tumor cell proliferation (PCNA, cyclin D1), and increased apoptosis (p21, caspase-3) in the lung tumors exposed to naproxen. Decreased serum levels of PGE2 and CXCR4 were observed in naproxen diet fed KrasG12V mice. Gene expression analysis of tumors revealed a significant increase in cytokine modulated genes (H2-Aa, H2-Ab1, Clu), which known to further modulate the cytokine signaling pathways. Overall, the results suggest a chemopreventive role of naproxen in inhibiting spontaneous lung adenocarcinoma formation in KrasG12V mice.


Assuntos
Antineoplásicos/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Neoplasias Pulmonares/genética , Mutação , Naproxeno/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Alelos , Substituição de Aminoácidos , Animais , Apoptose/genética , Linhagem Celular Tumoral , Dinoprostona/metabolismo , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores CXCR4/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Cancer Prev ; 26(1): 71-82, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33842408

RESUMO

The Division of Cancer Prevention of the National Cancer Institute (NCI) and the Office of Disease Prevention of the National Institutes of Health co-sponsored the Translational Advances in Cancer Prevention Agent Development Meeting on August 27 to 28, 2020. The goals of this meeting were to foster the exchange of ideas and stimulate new collaborative interactions among leading cancer prevention researchers from basic and clinical research; highlight new and emerging trends in immunoprevention and chemoprevention as well as new information from clinical trials; and provide information to the extramural research community on the significant resources available from the NCI to promote prevention agent development and rapid translation to clinical trials. The meeting included two plenary talks and five sessions covering the range from pre-clinical studies with chemo/immunopreventive agents to ongoing cancer prevention clinical trials. In addition, two NCI informational sessions describing contract resources for the preclinical agent development and cooperative grants for the Cancer Prevention Clinical Trials Network were also presented.

19.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348563

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide. The initiation and progression of CRC is a multi-step process that proceeds via precursor lesions to carcinoma, with each stage characterized by its distinct molecular and tissue microenvironment changes. Precursor lesions of CRC, aberrant crypt foci, and adenoma exhibit drastic changes in genetic, transcriptomic, and proteomic profiles compared to normal tissue. The identification of these changes is essential and provides further validation as an initiator or promoter of CRC and, more so, as lesion-specific druggable molecular targets for the precision chemoprevention of CRC. Mutated/dysregulated signaling (adenomatous polyposis coli, ß-catenin, epidermal growth factor receptor, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), tumor protein53, Akt, etc.), inflammatory (cyclooxygenase-2, microsomal prostaglandin E synthase-1, inducible nitric oxide synthase, and other pro-inflammatory mediators), and metabolic/growth factor (fatty acid synthase, ß-Hydroxy ß-methylglutaryl-CoA reductase, and ornithine decarboxylase) related targets are some of the well-characterized molecular targets in the precision chemoprevention of CRC. In this review, we discuss precursor-lesion specific targets of CRC and the current status of pre-clinical studies regarding clinical interventions and combinations for better efficacy and safety toward future precision clinical chemoprevention. In addition, we provide a brief discussion on the usefulness of secondary precision chemopreventive targets for tertiary precision chemoprevention to improve the disease-free and overall survival of advanced stage CRC patients.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/prevenção & controle , Terapia de Alvo Molecular/métodos , Medicina de Precisão/métodos , Proteína da Polipose Adenomatosa do Colo/antagonistas & inibidores , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Modelos Animais de Doenças , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/metabolismo , Humanos , Camundongos
20.
Science ; 370(6515): 467-472, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33093110

RESUMO

Colon mucus segregates the intestinal microbiota from host tissues, but how it organizes to function throughout the colon is unclear. In mice, we found that colon mucus consists of two distinct O-glycosylated entities of Muc2: a major form produced by the proximal colon, which encapsulates the fecal material including the microbiota, and a minor form derived from the distal colon, which adheres to the major form. The microbiota directs its own encapsulation by inducing Muc2 production from proximal colon goblet cells. In turn, O-glycans on proximal colon-derived Muc2 modulate the structure and function of the microbiota as well as transcription in the colon mucosa. Our work shows how proximal colon control of mucin production is an important element in the regulation of host-microbiota symbiosis.


Assuntos
Colo/metabolismo , Colo/microbiologia , Microbioma Gastrointestinal , Mucina-2/metabolismo , Muco/metabolismo , Animais , Fezes/microbiologia , Glicosilação , Camundongos , Camundongos Knockout , Mucina-2/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...